Транспирация у растений – суточный ход, интенсивность, видео

Транспирация у растений

Испарение воды растением представляет собой физический процесс, так как при этом в межклеточниках листьев вода переходит в парообразное состояние, и затем образовавшийся пар через устьица диффундирует в окружающее пространство.

Однако испарение воды — это и сложный физиологический процесс, поскольку он связан с анатомическими и физиологическими особенностями растений, поэтому в отличие от физического, физиологический процесс испарения растением воды и назван транспирация у растений.

Транспирация у герани

От чего зависит транспирация у растений

Зависит транспирация у растений от:

  • количества и размеров проводящих сосудов,
  • числа устьиц,
  • толщины кутикулы,
  • состояния коллоидов протоплазмы,
  • концентрации клеточного сока и других причин.

Вода передвигается вверх по стеблю, так как в результате транспирации в клетках листьев возникает сосущая сила, которая передается от них до корневых волосков корня, поглощающих воду из почвы.

Если поместить срезанную ветку или какое-либо растение в сосуд с водой, в течение долгого времени растение не вянет, что указывает на присасывающее действие транспирации.

Значение транспирации

Значение транспирации заключается в том, что:

  • вместе с водой по растению передвигаются поступившие в него минеральные элементы;
  • транспирация понижает температуру листа и защищает его от перегрева.

Оранжерея растений

Например, в оранжереях и парниках, где воздух влажный и транспирация подавлена, бывают ожоги листьев солнечными лучами. За счет транспирации создается некоторая недонасыщенность водой коллоидов протоплазмы, что способствует нормальному плодоношению и созреванию плодов, так как в этом случае идут синтетические процессы.

Влияние внешней среды

Влияние факторов внешней среды на процесс транспирации и ее суточный ход, выражается действием следующих  факторов:

  •  влияние света,
  • температуры воздуха,
  • сила ветра,
  • степень насыщения воздуха парами воды.

Влияние факторов внешней среды на процесс транспирации у растений

Свет способствует открытию устьичных щелей и повышает проницаемость протоплазмы испаряющих клеток для воды. Хлорофилл энергично поглощает солнечные лучи, что повышает температуру листа и усиливает испарение.

Увеличение транспирации снижает температуру листа, в результате чего испаряющие листья: не перегреваются. Даже рассеянный свет повышает транспирацию на 30—40% по сравнению с транспирацией, идущей в темноте. По данным Визнера, 100 кв. см листа кукурузы испаряют в темноте 97 мг воды, на рассеянном — 114 мг, на прямом солнечном свету —785 мг.

Температура воздуха, окружающего растение, также, влияет на транспирацию. С повышением температуры транспирация увеличивается, так как при этом усиливаются движение молекул воды и скорость диффузии водяного пара с поверхности коллоидов клеточных оболочек.

Обратите внимание

Сила ветра может играть двоякую роль в процессе транспирации. Роль ветра сводится к замене влажных слоев воздуха над листьями растений сухими, т. е. ветер влияет только па вторую фазу транспирации — выход пара из межклеточников листа. Сильный ветер треплет листья, что вызывает замыкание устьичных щелей и тем снижает транспирацию.

На транспирацию оказывает большое влияние и степень насыщения воздуха парами воды. Чем больше сухость воздуха, тем интенсивнее идет процесс транспирации, и наоборот.

Суточный ход транспирации

В течение суток транспирация зависит от внешних факторов. В утренние часы транспирация слабая, с поднятием солнца над горизонтом, повышением температуры воздуха и уменьшением содержания водяных паров в воздухе транспирация возрастает. К вечеру транспирация уменьшается и в ночные часы снижается до минимума.

Суточный ход транспирации у растений зависит от внешних факторов

Правильный суточный ход транспирации наблюдается только при безоблачном небе. Очень часто суточный ход транспирации имеет 2 максимума; минимум транспирации обычно падает на самые жаркие часы дня в полдень, что связано с обезвоживанием растений и закрытием устьиц.

Показатели транспирации

Транспирация у растений характеризуется следующими показателями:

  • интенсивность транспирации,
  • относительная транспирация,
  • транспирационный коэффициент,
  • продуктивность транспирации.

Интенсивность транспирации

Для сравнения транспирации растений ее обычно относят к единице площади и времени. Количество испаренной воды в единицу времени единицей поверхности листа называется интенсивностью транспирации.

Интенсивность транспирации у разных растений неодинакова в течение суток: днем у большинства растений она равна 15— 250 г. в час на 1 кв. м, ночью — 1—20 г.

Относительная транспирация

Чтобы иметь представление о скорости отдачи воды листовой поверхностью, ее сравнивают со скоростью испарения с открытой водной поверхности. Полученная величина называется относительной транспирацией. Относительная транспирация колеблется от 0,01 до 1,0.

Транспирационный коэффициент

Показателями транспирации могут также служит транспирационный коэффициент. Транспирационный коэффициент показывает, сколько граммов воды расходует растение за время накопления 1 г. сухого вещества.

Для правильного определения коэффициента необходимо учитывать не только сухой вес листьев, но обязательно и сухой вес стеблей и корней. Транспирационный коэффициент неодинаков для различных видов растений и даже для одного и того же вида растения, так как величина его зависит от условий произрастания.

Транспирационный коэффициент растений неодинаков и зависит от условий произрастания

Транспирационный коэффициент достаточно точно определен для однолетних растений; средняя его величина для травянистых растений равна 300—400 г.

Транспирационный коэффициент до известной степени характеризует потребность растения в воде и в какой-то мере может быть использован при расчетах количества поливной воды.

Продуктивность транспирации

Продуктивность транспирации — это количество граммов сухого вещества, накапливаемого растением за время транспирации 1 кг воды. Продуктивность транспирации колеблется от 1 до 8 г, а в среднем примерно равна 3 г. Зная величину транспирационного коэффициента, легко рассчитать продуктивность транспирации, и наоборот.

Лист как орган транспирации

Основную роль в транспирации у растений играют листья. Лист растения с верхней и нижней стороны покрыт эпидермисом, наружная стенка которого имеет кутикулу.

Лист как орган транспирации у розы

Строение устьиц и принцип их работ

В эпидермисе имеются отверстия — устьица, ограниченные двумя замыкающими клетками. В отличие от остальных клеток эпидермиса замыкающие клетки имеют хлоропласты и способны к фотосинтезу.

Толщина стенок замыкающих клеток неодинакова, противоположные щелям стенки, примыкающие к отверстию, утолщены. Поэтому при увеличении объема замыкающих клеток стенки растягиваются, тянут за собой примыкающие к щелям стенки, устьичная щель открывается. При уменьшении объема замыкающих клеток стенки их выпрямляются и устьичная щель закрывается

Замыкающие клетки устьиц злаков имеют иное строение они совершенно прямые, средняя часть клетки имеет очень толстые стенки, концы клеток тонкостенны и вздуты. При увеличении тургора концевые расширения замыкающих клеток увеличиваются в объеме, а средние толстостенные части отодвигаются друг от друга, открывая устьичную щель.

В основе открывания и закрывания устьиц лежит процесс перехода сахара в крахмал, и наоборот. Утром в замыкающих клетках начинается процесс фотосинтеза, в результате чего образуются осмотически деятельные сахара, которые на свету в крахмал не переходят.

Процесс перехода сахара в крахмал, и наоборот — лежит в основе открывания и закрывания устьиц

Осмотическое давление в замыкающих клетках повышается, увеличивается сосущая сила, поэтому они могут насасывать воду из близлежащих клеток эпидермиса.

Объем замыкающих клеток увеличивается, и устьичная щель открывается.

В темноте сахар превращается в крахмал, осмотическое давление в замыкающих клетках уменьшается, и соседние клетки эпидермиса сосут из них воду, поэтому объем замыкающих клеток становится меньше и устьичная щель закрывается.

Осмотическое давление в замыкающих клетках может повышаться также и за счет крахмала, который на свету может переходить в сахар. Движение устьиц зависит и от многих других факторов: изменения вязкости протоплазмы замыкающих клеток, содержания воды в клетках мезофилла, осмотического давления клеточного сока, температуры и других причин.

Обычно у большинства растений устьица открываются на рассвете, максимум открытия наблюдается к одиннадцати часам, к полудню щель устьица начинает несколько сужаться, и вечером оно закрывается. В жаркую погоду замыкающие клетки устьиц теряют много-воды и могут закрыться уже в полдень. Засухоустойчивые растения и в полдень имеют открытые устьица.

Транспирация устьичная и кутикулярная

Транспирация бывает:

Устьичная транспирация

Устьичная транспирация— это испарение воды с поверхности клеток мезофилла в межклеточники листа и диффузия образовавшегося водяного пара через устьичные отверстия в атмосферу.

Интенсивность устьичной транспирации зависит от количества устьиц на единице поверхности листа. Величина эта значительно колеблется у разных видов растений. Травянистые растения имеют 100—300, а иногда и 1000 устьиц на 1 кв. мм, древесные растения, например береза и осина, соответственно 160 и 290 устьиц на 1 кв. мм.

Береза — древесное растение с устьичной транспирацией

Площадь устьичных отверстий составляет всего около 1% (не более 2%) от поверхности листа.

Несмотря на то, что площадь устьичных отверстий незначительна, диффузия водяного пара идет с большой скоростью, так как согласно закону Стефана испарение с малых поверхностей идет пропорционально их суммарному диаметру, а не площади, так как с периферии поверхности малых отверстий пар диффундирует с большей скоростью, чем с внутренних участков. В первом случае молекулы пара двигаются, более свободно, меньше сталкиваясь с другими частицами пара.

Столкновения же задерживают диффузию молекул пара, испаряющихся от внутренних частей круглой поверхности, что снижает скорость испарения воды. При расстоянии между щелями устьиц не меньше 10 диаметров щели испарение через мелко продырявленную перегородку может оказаться таким же, как и из открытого сосуда.

Кутикулярная транспирация

Кутикулярная транспирация представляет собой испарение воды всей поверхностью листа через кутикулу. Кутикулярная транспирация зависит от целого ряда условий:

  • температуры листьев,
  • скорости ветра,
  • влажности воздуха,
  • толщины кутикулы.

У молодых листьев со слабо развитой кутикулой кутикулярная транспирация может составлять 1/2 от общей интенсивности транспирации. У взрослых листьев кутикулярная транспирация в 10— 20 раз слабее устьичной. Весьма значительна кутикулярная транспирация у теневыносливых растений, достигающая почти 1/2 от всей транспирации.

Кутикулярная транспирация шиповника — испарение воды всей поверхностью листа через кутикулу

У растений влажных местообитаний, кутикулярная транспирация равна устьичной, а иногда и превосходит в связи с сильно развитой кутикулой, кутикулярная транспирация почти отсутствует.

Проницаемость кутикулы после смачивания резко увеличивается, поэтому в жаркие дни при поливе растений нельзя смачивать листья.

Регулировка транспирации (устьичная и внеустьичная)

Регулировка транспирации может быть устьичной и внеустьичной.

Устьичная регулировка

Устьичная регулировка представляет собой регулировку выхода водяного пара: устьица могут открываться и закрываться; следовательно, они могут регулировать транспирацию.

Внеустьичная регулировка

Внеустьичиой регулировкой называется регулировка образования пара из воды в межклеточниках листа. Под влиянием транспирации клеточные, стенки, теряющие воду, с большой силой удерживают оставшуюся воду, поэтому задерживается парообразование и уменьшается транспирация.

Читайте также:  Яблоня - как привить на старую яблоню несколько сортов яблок, видео

Если осмотический потенциал почвенного раствора высок, вода поступает в растение с трудом, замедленно, что отражается на расходовании воды растением. В этом случае растение закрывает устьица и этим обрекает себя на углеродное голодание.

Если у растений хорошо выражена внеустьичная регулировка, задерживающая образование пара, то растение может при неблагоприятных условиях без вреда для себя держать устьица открытыми, не снижая процесса фотосинтеза.

(4

Источник: https://LibTime.ru/agro/transpiraciya-u-rastenij.html

Транспирация у растений и ее биологическое значение

Растения обладают своеобразной «кровеносной системой», позволяющей обеспечивать их всеми необходимыми для развития веществами. Ее венец – освобождение от воды через листья и стебли, которое биологи назвали «транспирация».

Транспирация – что это такое

Если говорить об этом понятии подробнее, то транспирация – не что иное, как испарение в атмосферу влаги из листьев и стеблей живых растений.

Это явление помогает воде, которую всасывает корневая система, иногда из достаточно глубоких слоев грунта (в пустынях корни могут уходить вглубь даже на двадцать метров), подниматься по стеблям или стволам к листьям, цветам, плодам, доставляя ко всем частям растительного организма нужные минералы и элементы.

И новая порция воды с питательными веществами «подсасывается» благодаря транспирации у растений: место освобождается испарением использованной влаги через мелкие поры на листьях, расположенные с тыльной стороны. Интенсивность движения воды зависит от внешних факторов – времени суток, температуры и влажности воздуха.

Другими словами, растение транспирирует, когда влажность воздуха внутри него выше влажности окружающей атмосферы. Доказано, что десять процентов всей влаги, которая испаряется на поверхности Земли, относится на счет именно растительного мира нашей планеты.

Биологическое значение транспирации

Перефразируя известное выражение, можно сказать: если какое-то явление существует, значит, оно для чего-то нужно. Справедливо это и по отношению к транспирации. Для растений она имеет жизненно важное значение, и считать ее губительной для мира флоры неверно.

  1. Процесс транспирации обеспечивает постоянное движение воды «от пят до макушки» — через корни, стебли, листья.
  2. Таким образом удается регулировать температурный и водный режимы. В самое жаркое время летнего дня листья обычно прохладнее окружающей атмосферы на три — восемь градусов.
  3. Испарение помогает разгрузить растение от излишка влаги внутри и дать место новой партии воды, полной питательными микроэлементами.
  4. Транспирация предотвращает перегревание и ожоги листьев при высокой температуре или попадании прямых лучей солнца.

Но если воды уходит больше, чем растение успевает «выпить» из земли корнями, ему грозит опасность:

  • дефицит влаги;
  • приостановка роста;
  • уменьшение интенсивности фотосинтеза;
  • нарушение обмена веществ внутри растительного организма.

Итогом может стать не просто увядание, но даже гибель. И все-таки, если условия не экстремальны, растение способно самостоятельно регулировать уровень испарения.

Если воды к поверхности, откуда она испаряется, приходит недостаточно, транспирация замедляется.

Процессы передвижения воды

Как мы уже выяснили, транспирация – естественный физиологический процесс в растительном мире. Главный ее орган – лист. Поскольку листьев у растений много, они образуют достаточно большую площадь для испарения.

В результате водный потенциал уменьшается, а это сигнал для клеток листьев к поглощению воды из ксилемных жилок. По принципу падающего домино следом провоцируется движение воды из корней по ксилеме к листьям. Образуется нечто сродни верхнему конечному двигателю.

И чем активнее транспирация, тем мощнее верхний «двигатель», и тем сильнее всасывающая сила «двигателя» нижнего – корневой системы.

Из стебля вода движется в листок, проходя по жилкам через черешок. По дороге жилки «разбегаются», число проводящих элементов становится меньше. Сами жилки превращаются в отдельные трахеиды, которые образуют очень густую сеть.

Задерживают влагу в листе однослойный эпидермис с кутикулой на его поверхности.

Превратившаяся в пар вода выходит сквозь устьица – специальные многочисленные отверстия микронных размеров, которые растение в состоянии расширять или сужать в зависимости от внешних условий.

Механизм и интенсивность транспирации

Растения поглощают лишь незначительную часть всего объема воды, который добывают из грунта – 0,2 процента, иногда немного больше. Все остальное испаряется в воздух. Механизм работы верхнего конечного двигателя достаточно прост.

Основан он на том, что обычно в атмосфере маловато водяных паров, а значит, ее водный потенциал можно охарактеризовать как негативный. Например, при относительной влажности воздуха в 90 процентов атмосферное давление равняется 140 барам.

Важно

А у подавляющего большинства представителей царства флоры давление внутри листа варьируется между 1 и 30 барами. Такой большой разрыв и обеспечивает транспирацию. Водный дефицит, спускаясь по клеткам от листьев по стеблям, неминуемо достигает корней.

Это вынуждает нижний двигатель «запускаться», всасывая воду из грунта. А испарение с поверхности листьев поднимает ее, вместе со всеми минеральными солями, обратно наверх.

Есть несколько факторов, влияющих на интенсивность транспирации

  1. «Наполненность» растения водой. Когда она достигает критического уровня, устьица сужаются.
  2. Насыщенность воздуха углекислым газом. Большинство растений на чрезмерную его концентрацию отвечают закрытием устьиц.
  3. Освещение. Обычно когда светло, устьица открыты.

    Темнеет – закрываются.

  4. Температура воздуха. Переваливая за 35-40°С, она провоцирует закрытие устьиц.
  5. Температура поверхности самого листа. Нагреваясь на каждые 10°С, лист отдает вдвое больше влаги.
  6. Влажность воздуха и скорость ветра.

    Чем суше атмосфера, тем выше транспирация.

Транспирация: виды

Испарение воды растениями проходит в три фазы:

  1. Продвижение из жилок в верхние слои мезофилла.
  2. Испарение из стенок клетки в межклеточные промежутки и пустоты вокруг устьиц; последующий выход наружу.
  3. Последний этап подразделяется на:
  • транспирацию через устьица — устьютную;
  • испарение в атмосферу непосредственно через клетки эпидермиса – кутикулярную транспирацию.

Устьютная

Ее можно разбить на две стадии

  1. Переход воды из капельного состояния (в таком виде она пребывает в клеточных оболочках) в газообразное в межклеточных промежутках. В это время растение способно регулировать силу транспирации.

    Если воды ему не хватает, в корневых и стеблевых сосудах возникает сильное напряжение, задерживающее продвижение воды к клеткам листьев. И испарение замедляется.

  2. Выделение пара на поверхность через устьица.

    Как только водяной пар выходит из межклеточных пустот, они снова заполняются за счет перемещения из оболочек клеток. Основной рычаг координирования транспирации – это степень открытости устьиц.

Кутикулярная

Транспирация, которую биологи назвали кутикулярной, у разных видов растений очень отличается по своей интенсивности. У одних потеря влаги за ее счет совсем незначительна.

Например, семействам магнолиевых и хвойных толстый эпидермис и кутикула поверх него на листьях не дают терять много жидкости. У других транспортируемая таким образом вода может составлять до 50 процентов общего объема.

Особенно силен процесс, когда листья еще молоденькие, с очень тонким эпидермисом и кутикулой.

Суточный ход и показатели транспирации

На протяжении суток растения «дышат» с разной силой

  1. Если на улице ясно и не очень сухо, первый глубокий «вдох» они делают на рассвете, когда устьица открываются на максимальную ширину. Во второй половине дня они понемногу сужаются и закрываются, когда садится солнце.

  2. В сухую погоду это происходит намного раньше – уже к десяти-одиннадцати часам. Как только к вечеру зной спадает, они опять открываются до заката.
  3. Когда небо затянуто облаками, устьица обычно открыты до вечера, но не очень широко.

Суточные колебания потери воды сопоставимы с движением устьиц. Транспирация несколько опережает поступление влаги, которая не может с такой же скоростью проходить по клеткам растения. Поэтому в дневное время образуется определенный дефицит. Зато ночью, когда устьица закрыты и «спят», он восполняется.

Но во многом ситуация зависит от региона, где растение живет, и его вида. Так, у кактусовых и молочайных устьица открываются исключительно по ночам.

В умеренном климате для накопления одного грамма сухих веществ растения задействуют около 300 граммов воды. В общем, данный показатель может колебаться от 125 до 1000 граммов.

Источник: https://attuale.ru/transpiratsiya-u-rastenij-i-ee-biologicheskoe-znachenie/

Биология для студентов – 34. Единицы измерения транспирации. Влияние внешних и внутренних факторов на процесс. Суточный ход транспирации

Транспирация у растений характеризуется следующими показателями:

  • интенсивность транспирации,
  • относительная транспирация,
  • транспирационный коэффициент,
  • продуктивность транспирации.

Интенсивность транспирации. Для сравнения транспирации растений ее обычно относят к единице площади и времени. Количество испаренной воды в единицу времени единицей поверхности листа называется интенсивностью транспирации. Интенсивность транспирации у разных растений неодинакова в течение суток: днем у большинства растений она равна 15— 250 г. в час на 1 кв. м, ночью — 1—20 г.

Относительная транспирация. Чтобы иметь представление о скорости отдачи воды листовой поверхностью, ее сравнивают со скоростью испарения с открытой водной поверхности. Полученная величина называется относительной транспирацией. Относительная транспирация колеблется от 0,01 до 1,0.

Транспирационный коэффициент. Показателями транспирации могут также служит транспирационный коэффициент. Транспирационный коэффициент показывает, сколько граммов воды расходует растение за время накопления 1 г. сухого вещества.

Для правильного определения коэффициента необходимо учитывать не только сухой вес листьев, но обязательно и сухой вес стеблей и корней.

Транспирационный коэффициент неодинаков для различных видов растений и даже для одного и того же вида растения, так как величина его зависит от условий произрастания.

Транспирационный коэффициент достаточно точно определен для однолетних растений; средняя его величина для травянистых растений равна 300—400 г. Транспирационный коэффициент до известной степени характеризует потребность растения в воде и в какой-то мере может быть использован при расчетах количества поливной воды.

Продуктивность транспирации — это количество граммов сухого вещества, накапливаемого растением за время транспирации 1 кг воды. Продуктивность транспирации колеблется от 1 до 8 г, а в среднем примерно равна 3 г. Зная величину транспирационного коэффициента, легко рассчитать продуктивность транспирации, и наоборот.

Совет

Транспирация повышается в полдень и падает ночью (гидролабильные виды) Закрывание устьиц в полдень может быть вызвано увеличением уровня углекислого газа в листьях при повышении температуры воздуха (усиление дыхания и фотодыхания), а также возможным водным дефицитом, возникающим в тканях при высоких температурах и низкой влажности воздуха. На поступление воды в растение оказывают влияние внешние условия.

Температура. Поступление воды в растение зависит от температуры. С понижением температуры скорость поступления воды сокращается. Это может происходить в результате следующих причин:

  • повышается вязкость воды и снижается ее подвижность;
  • тормозится рост корней;
  • уменьшается скорость метаболических процессов.

Снижение аэрации почвы (повышение углекислого газа) Повышение концентрации углекислого газа приводит к повышению вязкости воды и снижает проницаемость цитоплазмы.

Содержание воды в почве, концентрация почвенного раствора. Вода поступает в корень, если водный потенциал корня ниже, чем водный потенциал почвы. На засоленных почвах или на почвах, где концентрация почвенного раствора очень высокая, водный потенциал почвы ниже.

Поэтому вода начнет выделяться из корня. У растений, произрастающих на этих почвах – галофитах, в процессе эволюции выработался такой приспособительный признак как высокая концентрация клеточного сока.

Это обуславливает более низкий водный потенциал клеточного сока, вследствие чего вода из почвенного раствора поступает в корни.

Суточный ход транспирации. В течение суток транспирация зависит от внешних факторов. В утренние часы транспирация слабая, с поднятием солнца над горизонтом, повышением температуры воздуха и уменьшением содержания водяных паров в воздухе транспирация возрастает. К вечеру транспирация уменьшается и в ночные часы снижается до минимума.

Суточный ход транспирации у растений зависит от внешних факторов. Правильный суточный ход транспирации наблюдается только при безоблачном небе. Очень часто суточный ход транспирации имеет 2 максимума; минимум транспирации обычно падает на самые жаркие часы дня в полдень, что связано с обезвоживанием растений и закрытием устьиц.

Источник: https://vseobiology.ru/fiziologiya-rastenij/1660-34-edinitsy-izmereniya-transpiratsii-vliyanie-vneshnikh-i-vnutrennikh-faktorov-na-protsess-sutochnyj-khod-transpiratsii

Определение интенсивности транспирации

Процесс транспирации характеризуется следующими параметрами: интенсивность транспирации, продуктивность транспирации, транспирационный коэффициент и относительная транспирация.

Интенсивность транспирации – это то количество воды, которое испаряется растением в единицу времени с единицы площади листа. Выражается в граммах воды, испаряемой растением за 1 час на 1г сырой массы или на 1 дм [1].

Обычно скорость транспирации колеблется днем в пределах 15-250 г/м2/час, а ночью может снижаться до 7-20г/м /час. Интенсивность транспирации находится в зависимости от многих внутренних и внешних факторов (от запаса воды в почве, насыщенности атмосферы водяными парами, от скорости ветра, температуры воздуха и др.)

Обратите внимание

Для определения интенсивности транспирации существуют количественные методы (с помощью потометра Ман- гина, потометра Пфеффера, потометра Веска) и качественные методы (хлоркобальтовый метод).

Ход работы

Определение интенсивности транспирации пото- метрическим методом

Для определения интенсивности транспирации используют потометр (рис ).

Прибор заполняют дистиллированной водой. В одно колено прибора вставляют каучуковую пробку, в отверстие которой устанавливают растение или стебель проростка. В другое колено наливают масло во избежание испарения воды.

Взвешивают прибор и оставляют в течение часа. Через указанное время прибор с растением взвешивают повторно. Разница между первым взвешиванием (начало эксперимента) и вторым (конец эксперимента) указывает на количество воды, транспирированной растением за время опыта.

Интенсивность транспирации определяется по формуле:

где

а – вес прибора с растением в начале эксперимента (г);

b – вес прибора с растением в конце эксперимента (г);

t – время экспозиции (час);

S – площадь листьев (дм”); определяют одним из методов, описанных в работе.

Объект исследования Контрольный вес Вес листа через Интенсивность транспирации
3мин. 6мин. 9 мин.
1
2
3
4
среднее

Интенсивность транспирации рассчитывается по формуле:

где

а – контрольный вес листа (г); b – вес листа через 3 мин., 6 мин., 9 мин.(г); t – время экспозиции (час); S – площадь листа.

Оборудование и реактивы:

Потометр, растения (проростки кукурузы, бобов и др.), масло растительное, торзионные весы с разновесами, миллиметровая бумага.

Вопросы для повторения:

  • Что такое транспирация?
  • Какие бывают типы транспирации?
  • Какие особенности строения листа способствуют транспирации?
  • В каких пределах колеблется величина интенсивности транспирации и от каких факторов она зависит?
  • Какую роль играет транспирация в жизни растений?

Определение состояния устьиц у растений

Устьица – это структуры, расположенные в эпидерме листа и обеспечивающие эффективную его транспирацию.

Устьице состоит из двух замыкающих клеток с неравномерно утолщенными стенками, образующих устьичную щель. Внутри этих клеток находятся хлоропласты. В зависимости от вида растения устьица имеют округлую или удлиненную форму. Длина устьичной щели 20-30, а ширина 4-6 мкм. Обычно устьица занимают 1-2% площади листа.

В зависимости от вида растений устьица могут располагаться только на нижней стороне листа (гиперстоматические), только на верхней стороне листа (гипостоматические), или на обеих сторонах листа (амфистоматические).

Существует 3 типа физиологических реакций, обеспечивающих движение замыкающих клеток устьиц: фотоактивные, гидроактивные и гидропассивные.

Функционирование устьичного механизма зависит как от внутренних факторов (парциальное давление углекислого газа в межклетниках, ионный баланс, возраст листьев, суточные ритмы, наличие фитогормонов и др.), так и от внешних факторов среды (влажность воздуха, освещенность, температура, водоснабжение и др.).

Целью данной работы является изучение устьичного аппарата различных видов растений, наблюдение за состоянием устьиц (степень открытости устьичных щелей), подсчет количества устьиц на единицу площади листа.

Существует несколько методов определения состояния устьичного аппарата.

Ход работы

1. Метод Молиша Г. (метод инфильтрации)

Этот метод основан на способности различных жидкостей проникать в устьичные щели в зависимости от их открытости.

Разные жидкости обладают различной смачивающей способностью: легко проникает в устьичную щель ксилол, хуже бензол, спирт проникает только через широко открытые устьица.

Важно

Если межклетники заполнены жидкостью, то лист становится прозрачным, а если воздухом – то матовым.

На нижнюю поверхность горизонтально положенного листа нанести капли ксилола, бензола и спирта и оставить до полного исчезновения капель (они либо испарятся, либо проникнут внутрь листа). Если в месте нанесения капли цвет листа не изменился, это значит, что растворитель Испарился. Если в этом месте лист стал прозрачным, то растворитель проник через устьица в межклетник.

Результаты опыта записать в таблицу:

Объект исследования Действие: Состояние устьиц
Бензола Ксилола Спирта

Сделать вывод о состоянии открытости устьиц. 2. Метод Молотковского (метод отпечатков) На нижнюю поверхность листа стеклянной палочкой нанести каплю раствора кинопленки в ацетоне и быстро размазать ее тонким слоем.

После полного высыхания снять образовавшуюся пленку пинцетом, поместить на предметное стекло и рассмотреть под микроскопом без покровного стекла при большом увеличении.

Подсчитать число полностью открытых, полуоткрытых и закрытых устьиц и рассчитать процент полностью открытых устьиц. Зарисовать^

Метод Бусканьоли

Снять с нижней поверхности листа кусочек эпидермиса и быстро поместить его в 50%-ный раствор спирта на 5-10 мин. Затем срезы рассмотреть под микроскопом и зарисовать состояние устьиц.

Оборудование и реактивы:

Микроскоп, предметные стекла, различные комнатные растения, бензол, ксилол, спирт 96° и 50%, раствор кинопленки в ацетоне.

Вопросы для повторения:

Где встречается больше устьиц: в молодом или старом листе .Почему? Зависиг ли величина устьичной щели от освещенности? Указать физиологические механизмы, лежащие в основе движения замыкающих клеток.

Термины

Апопласт – совокупность всех свободных пространств клеток, представленная межфибриллярными полостями и межклеточниками, по которым осуществляется свободная диффузия веществ.

Водный баланс – соотношение между поглощением и расходованием воды растением. Существует 3 случая:

а) поглощение больше расходования;

б) поглощение равно расходованию;

в)поглощение меньше расходования (водный дефицит).

Гуттация – выделение листьями растений (через водяные устьица – гидатоды – на краях и кончиках листьев) капельной жидкости под воздействием корневого давления, когда поступление воды в растение превышает транспира- цию. Наблюдается рано утром или в условиях повышенной влажности. Данное явление помогает растениям освобождаться от избытка воды и солей.

Корневое давление – сила, поднимающая воду и растворенные в ней различные вещества вверх по сосудам. Be- личина непостоянная, зависит от внешних и внутренних факторов. В оптимальных условиях она равна 2-3 барам. Корневое давление может характеризовать поглощающую деятельность корня.

Коэффициент завядания – количество воды в почве, выраженное в процентах, оставшейся неиспользованной растениями во время увядания. Показатель, характеризующий почву, а не само растение. Коэффициент завядания данной почвы – это величина влажности почвы, при которой происходит длительное завядание.

Коэффициент транспирации – количество воды (г), транспирированной растением и затраченной для накопления одного грамма сухого вещества. Обычно варьирует в пределах видов от 300 – до 1000 г воды / на г сухого вещества. Каждое растение имеет свой коэффициент, зависящий не столько от видовой принадлежности, сколько от внешних условий.

Мертвый запас воды – количество воды в почве, полностью недоступной растению. Мертвый запас зависит только от типа почвы и ее механического состава и колеблется от 1-3 до 9. Чем больше глинистых частиц в почве, тем больше мертвый запас воды.

Относительная транспирация – отношение интенсивности транспирации с единицы листовой поверхности к скорости испарения с единицы открытой водной поверхности. Величина ее колеблется от 0,01 до 1,0. Это понятие имеет больше теоретическое значение, так как доказывает, что транспирация – процесс, регулируемый самим растением.

Пасока – жидкость, выделяющаяся из среза в основании стеблей или корней растений под действием корневого давления. В пасоке содержатся соли, аминокислоты, амиды, органические кислоты, цитокинины и другие вещества. По содержанию этих веществ в пасоке можно судить об их передвижении из корня в побег.

Плач растений – явление вытекания пасоки из перерезанного стебля. Плач иногда продолжается в течение нескольких суток, и количество выделившейся пасоки может быть очень большим, например – у тыквы до одного литра в сутки. Интенсивность плача определяется потоком солей в сосуды ксилемы. Плач представляет собой одно из проявлений активного транспорта веществ.

Пассивный механизм движения устьиц – закрытие устьиц в условиях высокой насыщенности водой, что обусловленно сдавливающим действием соседних клеток эпидермиса на устьичные клетки. Данный механизм предложил Столфельт в 1960 году.

Свободная вода – вода, которая сохраняет все свойства чистой воды, т.е. легко передвигается по растению, обладает свойствами растворителя, испаряется в процессе транспирации и замерзает при температуре ниже 10°С. Растертая, содержащие большое количество свободной воды, менее устойчивы к морозам.

Связанная вода – входит в состав химических соединений и недоступна растению. Связывается водородными или другими связями с молекулами белка. Не участвует в биохимических реакциях, не передвигается по растению и не замерзает при низких температурах.

Транспирационный ток – движение воды по сосудам ксилемы, вызванное транспирацией. Осуществляется по градиенту водного потенциала. Активными двигателями водного тока являются живые клетки, примыкающие к верхнему и нижнему концам всей проводящей системы растения.

Тургор – напряженное состояние органов растения, влияющее, как и осмотическое давление, на скорость поступления воды в клетку.

Фотоактивный механизм движения устьиц – состоит в том, что замыкающие клетки устьиц, содержащие хлоро- пласты, на свету открываются тем шире, чем больше интенсивность освещения, увеличивающая синтез углеводов, а следовательно – и всасывающую силу устьиц, за счет чего происходит поглощение воды и открытие устьиц.

[1] Определение интенсивности транспирации при помощи торзионных весов (по Л.А.Иванову)

Метод применяют при сравнении интенсивности транспирации листьев разных ярусов.

Лист или веточку растения взвесить на торзионных весах сразу же после их срезания (контрольный вес), затем взвешивание повторить 3-4 раза с интервалом в 3 минуты. Результаты взвешивания записать в таблицу:

Источник: http://PortalEco.ru/fiziologija-rastenij/opredelenie-intensivnosti-transpiracii.html

Транспирация и ее регулирование растением

Одной из важных характеристик процесса является интенсивность транспирации – количество воды, испаряемое растением с единицы листовой поверхности в единицу времени. В некоторых случаях удобнее проводить расчет  на единицу массы листьев. Для большинства сельскохозяйственных растений интенсивность транспирации составляет днем 15250, а ночью 120 г/(мч).

Высокая интенсивность транспирации, которую К.А.Тимирязев называл «необходимым злом», обусловлена тем, что атмосфера характеризуется очень низкими значениями водного потенциала. Водный потенциал связан логарифмической зависимостью с относительной влажностью воздуха:

                                          ,

   Где R газовая постоянная;   T абсолютная температура;   V парциальный мольный объем;   e – давление водяного пара в воздухе;  e давление водяного пара, насыщающего воздух при данной температуре.

Совет

Поэтому небольшой перепад относительной влажности приводит к значительной депрессии его водного потенциала.

Так, при относительной влажности воздуха 100% водный потенциал равен нулю, при влажности 99,6% 0,5 МПа, при 99 и 97% он составляет соответственно – 1,36 и 4,0 МПа.

Относительная влажность воздуха летом наиболее часто не превышает 60%, водный потенциал при этом снижается до – 68 МПа, а во время суховея (влажность 30%) депрессия водного потенциала достигает 200 МПа.

Кутикулярная транспирация.

С самого существования наземных растений возникла дилемма: ассимиляция СО  из атмосферы требует интенсивного газообмена; предотвращение значительной потери воды возможно только при наличии хорошей изоляции от окружающего воздуха, имеющего крайне низкие значения водного потенциала. Главная проблема газообмена, как ее сформулировал О.Штоккер (1923), состоит в «лавировании между жаждой и голодом»

Поддержание водного гомеостаза листа достигается наличием покровной ткани – эпидермиса.

Снаружи эпидермис покрыт кутикулой, в состав которой входят кутин – полимерные эфиры оксимонокарбоновых кислот и пластинки воска.

Кутикулярное диффузное сопротивление в большинстве случаев очень велико. Оно зависит от толщины кутикулы, расположения, плотности и числа прослоек Кутина и воска. Кутикулярная защита от транспирации весьма эффективна. У взрослых листьев кутикулярная транспирация составляет 1020% общего испарения воды.

У кутикулы есть уникальное свойство, обусловленное особенностями ее состава, изменять гидравлическую проводимость в зависимости от оводненности. Таким образом, потеря воды через кутикулу регулируется оводненностью листа. По ночам, например, при более сильном набухании кутикулы кутикулярная транспирация идет интенсивнее, чем днем. Смоченные листья могут поглощать воду через кутикулу.

Устьичная транспирация. Основной путь сообщения мезофилла листа с атмосферой – устьица. Процесс устьичной транспирации можно разделить на несколько этапов.

Первый этап – испарение воды с поверхности клеток в межклетники. Каждая клетка мезофилла хотя бы одной своей стороной граничит с межклеточным пространством. Необходимо отметить, что уже на этом этапе растение способно регулировать транспирацию.

Обратите внимание

Уменьшение испарения достигается двумя механизмами. Первый обусловлен изменениями водоудерживающей способности цитоплазмы путем увеличения осмотического и коллоидного связывания воды, ее компартментации в отдельных органеллах клетки  и снижения  проницаемости мембран.

Второй механизм связан с уменьшением оводненности клеточных стенок.

При снижении подачи воды корнем и увеличении водоудерживающей способности цитоплазмы клеток мезофилла клеточные стенки оказываются менее насыщенными водой, водные мениски в капиллярах между фибриллами становятся вогнутыми, что увеличивает силы поверхностного натяжения и затрудняет переход воды в парообразное состояние. Поэтому при открытых устьицах происходит снижение транспирации за счет уменьшения количества водяного пара в межклетниках. Это внеустьичный способ регулирования транспирации, который представляет несомненную выгоду для растения, так как позволяет снижать расход воды без ущерба для ассимиляции диоксида углерода.

Второй этап – выход паров воды из межклетников через устьичные щели. Число устьиц и их размещение сильно варьируют у разных видов растений. У большинства сельскохозяйственных растений устьица расположены в основном с нижней стороны листа. Это одно из приспособлений для снижения расходования воды.

Обычно устьица занимают 13% всей поверхности листа.

Однако относительная транспирация, под которой понимают отношение испарения воды листом к испарению с такой же по величине свободной поверхности, составляет 0,5 0,8 и может приближаться к единице.

Высокая скорость диффузии через устьица объясняется тем, что испарение из ряда мелких отверстий происходит быстрее, чем из одного крупного той же площади. Это связано с  повышенной краевой диффузией.

При открытых устьицах испарение может быть таким же, как с открытой водной поверхности. Закрывание устьиц наполовину еще мало влияет на интенсивность транспирации. Полное закрывание устьиц сокращает транспирацию примерно  на 90% . Таким образом, изменение степени открытости устьиц – устьичная регулировка – является основным механизмом контроля транспирации растением.

Транспирационный коэффициент и коэффициент водопотребления, зависимость от внутренних и внешних условий, способы их снижения.

Эффективность использования воды растением выражается рядом показателей. Количество созданного сухого вещества на 1 литр транспирированной воды характеризует продуктивность транспирации.

В зависимости от условий выращивания и видовых особенностей растений она составляет 28, чаще 35 г/л.

Важно

Величиной, обратной продуктивности транспирации, является транспирационный коэффициент, который показывает, сколько воды растение затрачивает на построение единицы массы сухого вещества.  Транспирационные коэффициенты варьируют от 100 до 500.

Определить продуктивность транспирации или транспирационный коэффициент довольно сложно. Расчет потери воды на транспирацию за вегетационный период на основе данных об интенсивности транспирации по декадам или месяцам дает большую ошибку.

В полевых опытах и агрономической практике для оценки эффективности использования воды определяют коэффициент водопотребления (эватранспирационный), который рассчитывают как отношение эвапотранспирации к созданной биомассе. Под эватранспирацией понимают суммарный расход воды за вегетацию 1 га поверхности почвы (эвапорация) и транспирация.

Коэффициент водопотребления в значительной степени зависит от почвенноклиматических факторов. В засушливые годы он выше,  чем в более влажные. Это объясняется тем, что в засушливых условиях усиление эвапотранспирации не сопровождается увеличением продуктивности растений, чаще она снижается, поэтому эффективность использования воды уменьшается.

Другим метеорологическим фактором, значительно влияющим на эффективность использования воды сельскохозяйственными растениями, является температура. С повышением температуры эвапотранспирация усиливается. Прохладный воздух снижает эвапотранспирацию, но у теплолюбивых культур вызывает также резкое подавление ассимиляционных процессов.

Мощным фактором снижения коэффициента водопотребления является повышение плодородия почвы. Снижение коэффициента водопотребления происходит не только при внесении удобрений, но и в случае любого изменения условий произрастания растений, сопровождающегося повышением урожая, в том числе и улучшения обеспечения их водой.

Водопотребление и урожайность связаны нелинейной зависимостью. При некотором достаточно высоком уровне урожайности ее рост уже не сопровождался повышением водопотребления, так как испарение в посеве или насаждении приближается к испарению со свободной водной поверхности.

     Как оказалось, внешние условия не только регулируют степень открытости устьиц, но и оказывают влияние  непосредственно на процесс транспирации. Зависимость интенсивности испарения  от условий среды подчиняется уравнению Дальтона. Транспирация также подчиняется это формуле, правда, с отклонениями. Согласно уравнению Дальтона:

Совет

Где V интенсивность испарения, количество воды, испарившейся с единицы поверхности; K коэффициент диффузии; F упругость паров воды, насыщающих данное пространство; f – упругость паров воды в окружающем пространстве при температуре испаряющейся поверхности; p атмосферное давление в момент опыта.

Из приведенного уравнения видно, что испарение пропорционально разности (Ff), т.е. ненасыщенности атмосферы парами воды, или  дефициту влажности. Чем больше дефицит влажности воздуха, тем ниже ее водный потенциал и тем быстрее будет испарение. Это в целом справедливо и для транспирации.

Однако надо учесть, что при недостатке воды в листе вступает в силу устьичная и внеустьичная регулировка, благодаря чему влияние внешних условий сказывается в смягченном виде и транспирация начинает возрастать медленнее, чем это следовало бы, исходя из формулы дальтона.

Несмотря на это, общая закономерность зависимости транспирации от насыщенности водой атмосферы остается справедливой. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации.

Сильное влияние на транспирацию оказывает свет. Если влияние влажности и температуры с большей силой сказывается на испарении со свободной водной поверхности, то свет сильнее влияет именно на транспирацию.

На интенсивность процесса транспирации оказывает влияние влажность почвы. С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем меньше ее в растении. Уменьшение воды в растении автоматически снижает процесс транспирации в силу устьичной и внеустьичной регулировки.

Формула Дальтона выведена для спокойной погоды. Однако ветер, перемешивая слои воздуха, очень сильно увеличивает скорость испарения. Ветер оказывает влияние и на транспирацию, правда, по сравнению с испарением в несколько ослабленной форме. Поскольку ветер обычно не проникает внутрь листа, то под его влиянием возрастает в основном третий этап транспирации, т.е.

перенос насыщенного водой воздуха от поверхности листа. В силу этого при ветре усиливается, прежде всего, кутикулярная транспирация. Большое действие ветер оказывает на транспирацию тех растений, где кутикула развита слабее. Сильнее на интенсивность транспирации сказываются суховеи.  В этом случае ветер сгибает и разгибает листья и  горячий воздух врывается в межклетники.

Усиление транспирации уже на первом этапе.

Обратите внимание

Транспирация зависит от ряда внутренних факторов,  прежде всего от содержания воды  в листьях. Транспирация изменяется в зависимости от концентрации клеточного сока.

Транспирация изменяется в зависимости от величины листовой поверхности, а также при изменении соотношения корни/побеги. Чем больше  развита листовая поверхность, больше побеги, тем значительнее общая потеря воды.

Интенсивность транспирации зависит и от фазы развития. С  увеличением возраста растений транспирация падает.

Смена дня и ночи, изменение условий в течение суток наложили отпечаток и на процесс транспирации.

Что касается суточного хода  транспирации, то в ночной период суток транспирация резко сокращается. Это связано с изменением внешних факторов , так и с внутренними особенностями. Измерения показывают, что ночная транспирация составляет всего 35% от дневной.

При частом измерении транспирации можно заметить, что этому процессу свойственно ритмичное увеличение и уменьшение интенсивности. Повидимому, это связано главным образом с колебанием содержания воды в растении. Увеличение транспирации приводит к уменьшению содержания воды, это, в свою очередь, сокращает интенсивность транспирации.

Как следствие, содержание воды растет, и транспирация также возрастает, и так непрерывно.

Источник: http://soullife.info/voprosy-po-distsipline-obshchaya-ekologiya/438-transpiracija-i-ee-regulirovanie-rasteniem.html

Ссылка на основную публикацию